Primate-parasite network analyses show how germs jump from host to host

By Carol Clark | eScienceCommons | March 23, 2017

Story image
Wild chimpanzees in Uganda's Kibale National Park. Chimpanzees, another threatened species of great ape, share 96 percent of human DNA. (Photo by Julie Rushmore)

An extensive review of research on wild primate social networks and parasites underscores the importance of super-spreaders, or central individuals that play an outsized role in transmission of a pathogen.

Trends in Parasitology published the review, the first comprehensive synthesis of environmental and theoretical studies of disease dynamics in wild primate species — most of which are now threatened with extinction.

“This review gives critical insights that are applicable not just to conservation, but to our understanding of emerging infectious diseases and human health,” says Thomas Gillespie, lead author of the review and a primate disease ecologist at Emory University. “We hope it helps jump-start a new way of approaching research into disease transmission – one that integrates ecology, behavior and evolution on a grand scale.”

About 60 percent of the more than 500 known primate species face an extinction threat and more than three-fourths of them are on the decline, due to loss of habitat, hunting and disease. Large chunks of the world’s forests are succumbing to agriculture, mining and logging, bringing people, primates, pets and livestock into closer proximity. That juxtaposition sets the stage for more pathogens to jump between humans and our closest relatives. More than 20 percent of wild primate species harbor parasites capable of spilling over into humans. HIV, Ebola, yellow fever and respiratory viruses are examples of viruses shared by humans and wild primates.

“How an emerging pathogen spreads through a species tends to be ‘a black box’ until it causes an outbreak among people,” Gillespie says. The Zika virus, for instance, was first identified in monkeys in Uganda in 1947 but was not widely studied until recently, after it started sweeping through human populations.

View Full Story in eScienceCommons »