Main content
A clear, molecular view of the evolution of human color vision

Many genetic mutations in visual pigments, spread over millions of years, were required for humans to evolve from a primitive mammal with a dim, shadowy view of the world into a greater ape able to see all the colors in a rainbow.

Now, after more than two decades of painstaking research, scientists have finished a detailed and complete picture of the evolution of human color vision. PLOS Genetics published the final pieces of this picture: The process for how humans switched from ultraviolet (UV) vision to violet vision, or the ability to see blue light.

"We have now traced all of the evolutionary pathways, going back 90 million years, that led to human color vision," says lead author Shozo Yokoyama, a biologist at Emory University. "We’ve clarified these molecular pathways at the chemical level, the genetic level and the functional level."

Co-authors of the PLOS Genetics paper include Emory biologists Jinyi Xing, Yang Liu and Davide Faggionato; Syracuse University biologist William Starmer; and Ahmet Altun, a chemist and former post-doc at Emory who is now at Fatih University in Istanbul, Turkey.

View Full Story in eScienceCommons »


Recent News